J un 2 00 8 Classes of 3 - regular graphs that are ( 7 , 2 ) - edge - choosable

نویسندگان

  • Daniel W. Cranston
  • Douglas B. West
چکیده

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of 3-Regular Graphs That Are (7, 2)-Edge-Choosable

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

متن کامل

DIMACS Technical Report 2008 - 03 February 2008 Classes of 3 - regular graphs that are ( 7 , 2 ) - edge - choosable

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

متن کامل

Planar graphs with maximum degree ∆ ≥ 9 are ( ∆ + 1 ) - edge - choosable – short proof

We give a short proof of the following theorem due to Borodin [2]. Every planar graph with maximum degree ∆ ≥ 9 is (∆ + 1)-edge-choosable. Key-words: edge-colouring, list colouring, List Colouring Conjecture, planar graphs This work was partially supported by the INRIA associated team EWIN between Mascotte and ParGO. in ria -0 04 32 38 9, v er si on 1 16 N ov 2 00 9 Les graphes planaires de deg...

متن کامل

Total weight choosability of graphs

A graph G = (V, E) is called (k, k′)-total weight choosable if the following holds: For any total list assignment L which assigns to each vertex x a set L(x) of k real numbers, and assigns to each edge e a set L(e) of k′ real numbers, there is a mapping f : V ∪ E → R such that f(y) ∈ L(y) for any y ∈ V ∪ E and for any two adjacent vertices x, x′, ∑ e∈E(x) f(e)+f(x) 6= ∑ e∈E(x′) f(e)+f(x ′). We ...

متن کامل

3-Choosability of Triangle-Free Planar Graphs with Constraints on 4-Cycles

A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] found such a graph which is not 3-choosable. We prove that if a triangle-free planar graph is not 3-choosable, then it contains a 4-cycle that intersects another 4or 5-cyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008